

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2
PREPARATORY EXAMINATION
SEPTEMBER 2020
MARKING GUIDLINES

MARKS: 150

TIME: 3 hours

This marking guideline consists of 12 pages.

NUMBER OF RED CARDS	NUMBER OF COUNTRIES (f)	MIDPOINT OF INTERVAL (x)	f. x
$0 < x \le 2$	27	1	27
$2 < x \le 4$	15	3	45
$4 < x \le 6$	5	5	25
$6 < x \le 8$	5	7	35
$8 < x \le 10$	3	9	27
TOTAL	55		159

NSC

2.1	A = 5,97; B = 2,18	A ✓ for A
	Y = 5.97 + 2.18 x	A √for B
		A√✓
		For equation
	Answer only full marks	(4)
2.2	Estimated monthly income	CA✓
	y = 5,97 + 2,18(9)	substitution
	= 25,59	CA√ answer
	∴ Monthly income = R25598,89	(2)
	If 9000 is used only 1 mark	
2.3	r = 0.94	CA√√ (2)
2.4	Very strong positive relationship between the monthly rent and the monthly	CA ✓ strong
	income.	CA ✓ positive
		(2)
		[10]

3.1.1	0-1 1	A✓ sub into correct formula
	$m_{LM} = \frac{0-1}{4-1} = -\frac{1}{3}$	$A \checkmark -\frac{1}{3}$
	2 - 0 1	3
	$m_{MN} = \frac{2-0}{8-4} = \frac{1}{2}$	A✓ Sub into correct formula
		$A \checkmark \frac{1}{2}$
		(4)
3.1.2	$KM = \sqrt{(4-4)^2 + (10-0)^2}$	(4) CA ✓ subst
	$=\sqrt{100}$	CA ✓10 units (2)
	= 10 units Answer only full marks	(2)
3.1.3	1	GA (4 0 1
	$m_{MN} = \frac{1}{2}$	$CA \checkmark \tan \theta = \frac{1}{2}$
	$m_{MN} = \frac{1}{2}$ $\tan \theta = \frac{1}{2}$	
	$\theta = 26,57^{\circ}$	CA $\checkmark \theta = 26,57^{\circ}$ provided acute
	Answer only full marks	angle
3.1.4		(2) A√correct substitution
3.1.4	$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	A correct substitution
	$\left(\frac{1+8}{2};\frac{1+2}{2}\right)$	
	$\left(\frac{9}{2}; \frac{3}{2}\right)$ $m_{KL} = \frac{10 - 1}{4 - 1} = 3$	A√answer (2)
3.2	$m_{vv} = \frac{10-1}{1} = 3$	A√subst
	$\frac{m_{KL}}{4-1} = 3$	A√3
	$m_{KL} \times m_{LM} = 3 \times \left(-\frac{1}{3}\right)$	
	=-1	$A \checkmark \text{product} = -1 \tag{3}$
3.3	$ \begin{array}{c} $	(3)
	$m_{KN} = \frac{10 - 2}{4 - 8}$	A (M 2
	=-2	A√M _{KN} -2
		A√KN ⊥ MN A√Sum of 180°
	∴ $KLM + KNM = 180^{\circ}$ ∴ $KLMN$ is cyclic quadrilateral (converse, opp \angle^s of a cyclic	
	quad are supplementary)	$M_{MN} = \frac{1}{2} : (-2) \left(\frac{1}{2}\right) = -1$
		A√ reason
		(4) [17]
		[17]

		T
4.1	$M\left(\frac{-5+3}{2}; \frac{4+2}{2}\right) = M(-1;3)$	$A \checkmark x = -1$
	$M\left(\frac{1}{2};\frac{1}{2}\right)=M(-1;3)$	$A \checkmark y = 3$
	/	(2)
4.2	$r^2 = BM^2 = (-5+1)^2 + (4-3)^2 = 17$	CA√ subst into equation
7.2	$\begin{bmatrix} 1 & -DM & -(-J+1) & +(4-J) & -17 \\ -1 & -1 & -17 \end{bmatrix}$	$CA \checkmark r^2 = 17$
	()2 ()2 (-	
	$\therefore (x+1)^2 + (y-3)^2 = 17$	CA√equation
		For CA marks coordinates of M
		must be in second quadrant
		(3)
4.3	2 – 3 1	$A \checkmark m_{MA} \text{ or } m_{BA}$
7.5	$m_{AB} = \frac{2-3}{3+1} = -\frac{1}{4}$ $m_{AN} = \frac{2+2}{3-2} = 4$	TY MMA OI MBA
	3+1 4	
	$m \dots = \frac{Z+Z}{} = 4$	$A \checkmark m_{AN}$
	$\frac{m_{AN}}{3} = 3 - 2$	
	$m_{AB} \times m_{AN} = -1$	A√product of gradients = -1
	$\therefore B\hat{A}T = 90^{\circ}$	$A\sqrt{90^{0}}$
	$\therefore TA$ is a tangent (conv. tangent and diameter)	A√reason
	(conv. tangent and diameter)	
4 4 1		(5)
4.4.1	$m_{TA} = m_{AN} = 4$	$CA \checkmark m_{TA} = m_{AN}$
	y = 4x + c	CA√equation
	Subst. $(3; 2)$: $2 = 4(3) + c$	CA \checkmark subst of (3; 2) or (2; -2)
	-10 = c	
	$\therefore y = 4x - 10$	CA√equation
	$y = 4\lambda - 10$	(4)
4.4.2	I -4 C()	(4)
4.4.2	Let $C(x; y)$	
	$\therefore (x+1)^2 + (y-3)^2 = 17$	CA√equation of circle
	At C; x = 0	
	$\therefore (0+1)^2 + (y-3)^2 = 17$	$CA \checkmark subst x = 0$
	$(y-3)^2 = 16$	
	$y-3=\pm 4$	
		CA√y values
	y = 7 or y = -1	CA√ co-ordinate
	$: \mathcal{C}(0; -1) $	CAV co-ordinate
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	
	$m_{BC} = \frac{-1-4}{0+5} = -1$	CA√ gradient
	Now $y = -x - 1$	CA√equation
		(6)
1.5	Lines AT and DT interest at C	(0)
4.5	Lines AT and BT intersect at C	
	$\therefore 4x - 10 = -x - 1$	CA√equations equal
	5x = 9	
	9	
	$x = \frac{1}{5} = a$	CA√value of a
	$x = \frac{9}{5} = a$ $b = -\frac{9}{5} - 1 = -2\frac{4}{5}$	
	$b = -\frac{1}{2} - 1 = -2\frac{1}{2}$	CA. (value of b For CA montes
	5 5	CA value of b, For CA marks
		A and B are points in the 4 th
		quadrant
		(3)
		[23]
		,= · ,

NSC

<i>T</i> 1	700 0440 1 4 4040 1 400	
5.1	$\cos 79^{\circ} \cos 311^{\circ} + \sin 101^{\circ} \sin 49^{\circ}$	
	$= \cos 79^{\circ} \cos 49^{\circ} + \sin 79^{\circ} \sin 49^{\circ}$	$A\checkmark\cos 49^{\circ} A\checkmark\sin 79^{\circ}$
	$=\cos(79^{\circ}-49^{\circ})$	
	$=\cos 30^{\circ}$	$A\checkmark\cos 30^{\circ}$
	$=\frac{\sqrt{3}}{}$	A✓ answer
	$=\frac{1}{2}$	(4)
	Answer only no marks, used calculator	
5.2	$\sin(x+y) = 3\sin(x-y)$	
	$\sin x \cos y + \cos x \sin y$	A✓expansion
	$= 3(\sin x \cos y - \cos x \sin y)$	
	$\sin x \cos y + \cos x \sin y$	A√like terms added
	$= 3\sin x \cos y - 3\cos x \sin y$	
	$-2\sin x\cos y = -4\cos x\sin y$	A√divide
	$\div -2\cos x\cos y$:	
	$\frac{\sin x}{\cos x} = 2\left(\frac{\sin y}{\cos y}\right)$	A √
	$\cos x^{-2} (\cos y)$	$\frac{\sin x}{\cos x} = 2\left(\frac{\sin y}{\cos y}\right)$
	$\therefore \tan x = 2 \tan y$	$\cos x = (\cos y)$
		(4)
5.3.1	$\frac{\cos x}{\cos x} - \frac{\cos 2x}{\cos x} = \sin x$	
	$\sin 2x = 2\sin x$	
	2221	
	LHS: $\frac{\cos x}{\sin^2 x} - \frac{\cos 2x}{2\sin x}$	
	LHS: $\frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x}$ $= \frac{\cos x}{2\sin x} - \frac{1 - 2\sin^2 x}{2\sin x}$	
	$= \frac{2\sin x \cos x}{2\sin x \cos x} - \frac{2\sin x}{2\sin x}$	$A \checkmark 2 \sin x \cos x$
	$ \begin{array}{c cccc} 2 \sin x \cos x & 2 \sin x \\ 1 & (1 - 2\sin^2 x) \end{array} $	$A\checkmark 1 - 2sin^2x$
	l _	
	$= \frac{2\sin x}{2\sin x} - \frac{2\sin x}{1 - 1 + 2\sin^2 x}$	
	l =	A✓numerator
	$2\sin x$ $2\sin^2 x$	
	l =	A✓answer
	$\frac{1}{2}\sin x$	
	$=\sin x$	(4)
	=RHS	(4)

7

5.3.2	$1 + 2\cos 2x = \frac{\cos 2x}{2\sin x} - \frac{\cos x}{\sin 2x}$ $1 + 2\cos 2x = -\sin x$ $1 + 2(1 - 2\sin^2 x) = -\sin x$ $1 + 2 - 4\sin^2 x = -\sin x$		$A \checkmark - \sin x$
	$4\sin^2 x - \sin x - 3 = 0$ $(\sin x - 1)(4\sin x + 3) = 0$ $\sin x = 1$ $x = 90^\circ$ OR	$\sin x = -\frac{3}{4}$ $\operatorname{ref} \angle = 48,59^{\circ}$	A✓standard quadratic form A ✓ Factors
		$x = 228.59$ OR $x = 311,41^{\circ}$	CA ✓ 90 ⁰ CA ✓ 228.59° CA ✓ 311.41° (6)

6.1	a = 1	$A \checkmark a = 1$
	b=2	$A \checkmark b = 2$
	c=2	$A \checkmark c = 2$
	d = 1	$A \checkmark d = 1$
		(4)
6.2	360°	A√360°
		(1)
6.3.1	$x \in [-90^{\circ}; 90^{\circ}] or x \in [270^{\circ}; 360^{\circ}]$	AA✓✓ values and notation
		(2)
6.3.2	$x \in (-45^{\circ}; 0^{\circ})$ or $x \in (45^{\circ}; 90^{\circ})$ or $x \in (315^{\circ}; 360^{\circ})$	AAA✓✓✓ values and
		correct notation
		(3)
		[11]

7.1	n ΔPQR :	
	$ \begin{aligned} \widehat{Q}_1 &= x & (PR &= QR) \\ \widehat{R} &= 180^{\circ} - 2x & (sum of \angle \Delta PQR) \end{aligned} $	$ A\widehat{\sqrt{Q}_1} = x A\widehat{\sqrt{R}} = 180^\circ - 2x $
	$\widehat{R} = 180^{\circ} - 2x \qquad (sum \ of \angle \Delta PQR)$	$A\widehat{\sqrt{R}} = 180^{\circ} - 2x$
	Area of $\Delta PQR = \frac{1}{2}pq \sin \hat{R}$ = $\frac{1}{2}m.m \sin(180^{\circ} - 2x)$	A√Subst. into Area rule
	$=\frac{2}{3}m^2\sin 2x$	A√sin2x
	$-\frac{1}{2}m \sin 2x$	A√answer
		(5)

7.2	$ \therefore \frac{PQ}{\sin(180^\circ - 2x)} = \frac{m}{\sin x} $ $ \therefore PQ = \frac{m \cdot \sin(180^\circ - 2x)}{\sin x} $ $ \therefore PQ = \frac{m \cdot \sin 2x}{\sin x} $ $ \therefore PQ = \frac{m \cdot 2 \sin x \cdot \cos x}{\sin x} $ $ \therefore PQ = 2m \cos x $	A \checkmark Use of sine rule A \checkmark subst into sine Rule A \checkmark sin $2x$ A \checkmark 2 sin x cos x (4)
7.3	In $\triangle SPQ$: $\tan y = \frac{SP}{PQ}$ $\therefore SP = PQ \tan y$ $\therefore SP = 2m \cos x \tan y$	$A\checkmark \tan y = \frac{SP}{PQ}$ $A\checkmark SP = PQ \tan y$ (2)

9

NSC

QUESTION 8 8.1

R.T.P	KP _ KQ	
	$\frac{KP}{PL} = \frac{KQ}{QM}$	
	CONSTRUCTION: In Δ KPQ, draw perpendicular heights, h from Q to KP and K from P to KQ	A√construction
	$\frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{LPQ}} = \frac{\frac{1}{2} \text{KP} \times \text{h}}{\frac{1}{2} \text{PL} \times \text{h}}$	A✓method
	$=\frac{\mathrm{KP}}{\mathrm{PL}}$	$A\checkmark\frac{KP}{PL}$
	$\frac{Area of \Delta KPQ}{Area of \Delta MQP} = \frac{\frac{1}{2}KQ \times k}{\frac{1}{2}QM \times k}$	A✓method
	$=\frac{KQ}{QM}$	$A\checkmark \frac{KQ}{QM}$
	But area of \triangle PLQ = Area of \triangle MPQ Same base, same height	
	$\therefore \frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{LPQ}} = \frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{MQP}}$	A✓method
	$\therefore \frac{KP}{PL} = \frac{KQ}{QM}$	(6)

	10	
8.2.1	In ΔAPQ:	
	BC PQ $\frac{AB}{AP} = \frac{AC}{AQ}.$; conv prop	A√S A√R
	$\widehat{T}_1 = \widehat{C}_2$ alternate $\angle s$; BC PQ $\widehat{A}_2 = \widehat{C}_2$ tangent TC; chord BC $\therefore \widehat{A}_2 = \widehat{T}_1$	A✓ S/R A✓ S/R
		(4)
8.2.2	In $\triangle ABC$ and $\triangle TCQ$: $\widehat{C}_3 = \widehat{Q} \qquad corr \angle^s; \ BC \parallel PQ$ $\widehat{A}_2 = \widehat{T}_1 \qquad proved above$ $\widehat{B}_2 = \widehat{C}_1 \qquad rem \angle^s$ $\therefore \triangle ABC \parallel \triangle TCQ \qquad \angle \angle \angle$	A✓ S/R A✓ S/R A✓ S/R A✓ S/R
		(4)
8.2.3	$\widehat{B}_1 = \widehat{C}_3$ tangent SB; chord AB $\widehat{Q} = \widehat{C}_3$ proven $\widehat{B}_1 = \widehat{Q}$	A√S A√R A√ S
	$∴ B_1 = Q$ $∴ ABTQ is cyclic conv. ext ∠ = int∠of cyclic quad.$	$A\checkmark S/R$ (4)
8.2.4	$\begin{array}{ll} TB = TC & tangents \ from \ common \ point \\ \widehat{B}_3 = \widehat{C}_2 & TB = TC; \ \angle s \ opp \ eq. \ sides \\ \widehat{T}_1 = \widehat{C}_2 & alt. \ \angle s; \ BC \parallel PQ \\ \therefore \ \widehat{B}_3 = \widehat{T}_1 & \\ \therefore \ TQ \ is \ a \ tangent & conv. \ tan; \ chord \ theorem \end{array}$	A✓S A✓R A✓S A✓S/R
		(5)
		[23]

9.1	In ΔMBC:	
	$\hat{B}_2 = \hat{B}_3 = x$ BE bisects MBC	A✓S
	$\therefore \hat{MBC} = 2x$	
	$\hat{MBC} = \hat{MCB} = 2x$ angles opposite equal sides	A✓S/R
	In ΔBEC:	
	$\hat{E}_2 = 180^\circ - (x+x)$ Sum of angles of a Δ	A√S/R
	$= 180^{\circ} -2x$	A✓Answer
		(4)

-	
- 1	

9.2	In \triangle MBC:B \hat{M} C = 180° - (2x+2x) Sum of angles of a \triangle	
	$= 180^{\circ} - 4x$	A√S A√R
	But $\hat{BAC} = \frac{1}{2}\hat{BMC}$ \angle at centre twice angle	
	$= \frac{1}{2}(180^{\circ} - 4x)$	A√S/R
	=90-2x	(3)
9.3	Ιn ΔΑΒΕ:	
7.5	$\hat{E}_1 + \hat{E}_2 = 180^{\circ}$ Straight line	A√S/R
	$\hat{E}_1 = 180^{\circ} - E_2$	
	$= 180^{\circ} - (180^{\circ} - 2x)$	
	=2x	A✓S
	In ΔABE:	
	$\hat{ABE} + \hat{BAC} + \hat{E} = 180^{\circ}$ Sum of $\angle s$ of Δ	A✓S/R
	$\hat{ABE} = 180^{\circ} - (\hat{BAC} + \hat{E}_1)$	
	$= 180^{\circ} - (90^{\circ} - 2x + 2x)$	
	= 90°	A√S
	∴ AE is a diameter of circle ABE (Subtends) ∠ 90°	A√R (5)
		[12]

12

QUESTION 10

	Let $\widehat{Y}_1 = a$ and $\widehat{N} = b$ $\therefore \widehat{T}_3 = a - b$ (ext. \angle of Δ = sum opp. \angle s) $\widehat{T}_1 = \widehat{N} = b$ (tan XT; chord MT) $\widehat{X}\widehat{T}Y = a$ (angles opposite equal sides) $\widehat{T}_2 = \widehat{X}\widehat{T}Y - \widehat{T}_1$ = a - b $\therefore \widehat{T}_3 = \widehat{T}_2$ $\therefore YT$ bisects M $\widehat{T}N$	$A \checkmark S/R$ $A \checkmark S A \checkmark R$ $A \checkmark S/R$
		A√S (5)
	In ΔXMT and ΔXTN : $\widehat{X} \text{ is common}$ $\widehat{T}_1 = \widehat{N} \qquad \text{tan XT; chord MT}$ $\widehat{M}_1 = X\widehat{T}N \qquad \text{remaining } \angle$ $\therefore \Delta XMT \Delta XTN \qquad \angle \angle \angle$ $\therefore \frac{XM}{XT} = \frac{XT}{XN} = \frac{MT}{TN} \qquad \text{similar } \Delta's$ $\therefore \frac{XM}{XT} = \frac{XT}{XN} = \frac{XT}{XN}$	A✓S/R A✓S A✓R A✓R A✓R A✓ S/R
		(6)
10.2.1	XM = XY - 20 $= k - 20$ $XY = XT$	A√S A√R A√answer
		(3)
	$\frac{XM}{XT} = \frac{XT}{XN}$	A✓ LHS A✓ RHS
		A√Simplification
	30k = 1000 $k = 33,3 mm$	A√Answer
		(4)
		[18]

TOTAL: 150