

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL

SENIOR CERTIFICATE

GRADE 12

MARKS: 150
TIME: 3 hours

This marking guideline consists of $\mathbf{1 2}$ pages.

QUESTION 1

NUMBER OF RED CARDS	NUMBER OF COUNTRIES ($\boldsymbol{f})$	MIDPOINT OF INTERVAL (\boldsymbol{x})	$\boldsymbol{f} \boldsymbol{x}$
	27	1	
$0<x \leq 2$	15	3	27
$2<x \leq 4$	5	5	45
$4<x \leq 6$	5	7	25
$6<x \leq 8$	3	9	35
$8<x \leq 10$	55		27
TOTAL		159	

QUESTION 2

2.1	$\begin{aligned} & A=5,97 ; B=2,18 \\ & Y=5,97+2,18 \boldsymbol{x} \end{aligned}$ Answer only full marks	A \checkmark for A A \checkmark for B A $\checkmark \checkmark$ For equation (4)
2.2	Estimated monthly income $\begin{aligned} y & =5,97+2,18(9) \\ & =25,59 \end{aligned}$ \therefore Monthly income $=\mathrm{R} 25598,89$ If 9000 is used only 1 mark	CA $\sqrt{ }$ substitution CA \checkmark answer
2.3	$r=0,94$	CA $\checkmark \checkmark$ (2)
2.4	Very strong positive relationship between the monthly rent and the monthly income.	CA \checkmark strong CA \checkmark positive

QUESTION 3

3.1.1	$\begin{aligned} & m_{L M}=\frac{0-1}{4-1}=-\frac{1}{3} \\ & m_{M N}=\frac{2-0}{8-4}=\frac{1}{2} \end{aligned}$	A \checkmark sub into correct formula A $\checkmark-\frac{1}{3}$ A \checkmark Sub into correct formula A $\checkmark \frac{1}{2}$
3.1.2	$\begin{align*} K M & =\sqrt{(4-4)^{2}+(10-0)^{2}} \\ & =\sqrt{100} \\ & =10 \mathrm{units} \tag{2} \end{align*}$ Answer only full marks	$\mathrm{CA} \checkmark \text { subst }$ $\mathrm{CA} \checkmark 10 \text { units }$
3.1.3	$\begin{aligned} & m_{M N}=\frac{1}{2} \\ & \tan \theta=\frac{1}{2} \\ & \theta=26,57^{\circ} \end{aligned}$ Answer only full marks	$\mathrm{CA} \checkmark \tan \theta=\frac{1}{2}$ CA $\checkmark \theta=26,57^{0}$ provided acute angle (2)
3.1.4	$\begin{align*} & \left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\ & \left(\frac{1+8}{2} ; \frac{1+2}{2}\right) \\ & \left(\frac{9}{2} ; \frac{3}{2}\right) \tag{2} \end{align*}$	A \checkmark correct substitution $\mathrm{A} \checkmark$ answer
3.2	$\begin{align*} & m_{K L}=\frac{10-1}{4-1}=3 \\ & m_{K L} \times m_{L M}=3 \times\left(-\frac{1}{3}\right) \\ & \quad=-1 \end{align*}$	A $\sqrt{ }$ subst $A \checkmark 3$ $\mathrm{A} \checkmark \text { product }=-1$
3.3	$\begin{aligned} m_{K N} & =\frac{10-2}{4-8} \\ & =-2 \end{aligned}$ $\begin{aligned} & \therefore K N \perp N M \\ & \therefore K \hat{L} M+K \widehat{N} M=180^{\circ} \end{aligned}$ $\therefore K L M N$ is cyclic quadrilateral (converse, opp \angle^{s} of a cyclic quad are supplementary)	$\mathrm{A} \checkmark \mathrm{M}_{\mathrm{KN}}-2$ $\mathrm{A} \checkmark \mathrm{KN} \perp \mathrm{MN}$ A \checkmark Sum of 180° $M_{M N}=\frac{1}{2} \therefore(-2)\left(\frac{1}{2}\right)=-1$ $A \checkmark$ reason

QUESTION 4

4.1	$M\left(\frac{-5+3}{2} ; \frac{4+2}{2}\right)=M(-1 ; 3)$	$\begin{array}{\|l} \mathrm{A} \checkmark x=-1 \\ \mathrm{~A} \checkmark y=3 \end{array}$
4.2	$\begin{align*} & r^{2}=B M^{2}=(-5+1)^{2}+(4-3)^{2}=17 \tag{2}\\ & \therefore(x+1)^{2}+(y-3)^{2}=17 \end{align*}$	CA \checkmark subst into equation CA $\checkmark r^{2}=17$ CA \checkmark equation For CA marks coordinates of M must be in second quadrant
4.3	$\begin{aligned} & m_{A B}=\frac{2-3}{3+1}=-\frac{1}{4} \\ & m_{A N}=\frac{2+2}{3-2}=4 \\ & m_{A B} \times m_{A N}=-1 \\ & \therefore B \hat{A} T=90^{\circ} \\ & \therefore T A \text { is a tangent (conv. tangent and diameter) } \end{aligned}$	$\begin{aligned} & \mathrm{A} \checkmark m_{M A} \text { or } m_{B A} \\ & \text { A } \checkmark m_{A N} \\ & \text { A } \checkmark \text { product of gradients }=-1 \\ & A \checkmark 90^{0} \\ & A \checkmark \text { reason } \end{aligned}$
4.4.1	$\begin{aligned} & m_{T A}=m_{A N}=4 \\ & y=4 x+c \\ & \text { Subst. }(3 ; 2): \quad 2=4(3)+c \\ & \quad \therefore y=4 x-10=c \end{aligned}$	$\mathrm{CA} \checkmark m_{T A}=m_{A N}$ CA \checkmark equation CA \checkmark subst of $(3 ; 2)$ or $(2 ;-2)$ $C A \checkmark$ equation
4.4.2	$\begin{aligned} & \text { Let } \mathrm{C}(\mathrm{x} ; \mathrm{y}) \\ & \begin{array}{l} \text { At } \mathrm{C} ; x=0 \quad \therefore(x+1)^{2}+(y-3)^{2}=17 \end{array} \\ & \therefore(0+1)^{2}+(y-3)^{2}=17 \\ & (y-3)^{2}=16 \\ & y-3= \pm 4 \\ & y=7 \text { or } y=-1 \end{aligned}$ Now $y=-x-1$	CA \checkmark equation of circle $\text { CA } \checkmark \text { subst } x=0$ CA \checkmark y values CA \checkmark co-ordinate CA \checkmark gradient $C A \checkmark$ equation
4.5	Lines AT and BT intersect at C $\begin{gathered} \therefore 4 x-10=-x-1 \\ 5 x=9 \\ x=\frac{9}{5}=a \\ b=-\frac{9}{5}-1=-2 \frac{4}{5} \end{gathered}$	$C A \checkmark$ equations equal $C A \checkmark$ value of a $C A \checkmark$ value of b, For CA marks A and B are points in the $4^{\text {th }}$ quadrant
		[23]

QUESTION 5

QUESTION 6

6.1	$\begin{align*} & a=1 \\ & b=2 \\ & c=2 \\ & d=1 \tag{4} \end{align*}$	$\begin{aligned} & \mathrm{A} \checkmark a=1 \\ & \mathrm{~A} \checkmark b=2 \\ & \mathrm{~A} \checkmark c=2 \\ & \mathrm{~A} \checkmark d=1 \end{aligned}$
6.2	360°	A $\sqrt{ } 360^{\circ}$
6.3.1	$x \in\left[-90^{\circ} ; 90^{\circ}\right]$ or $x \in\left[270^{\circ} ; 360^{\circ}\right]$	AA $\checkmark \checkmark$ values and notation
		(2)
6.3.2	$x \in\left(-45^{\circ} ; 0^{\circ}\right)$ or $x \in\left(45^{\circ} ; 90^{\circ}\right)$ or $x \in\left(315^{\circ} ; 360^{\circ}\right)$	AAA $\checkmark \checkmark \checkmark$ values and correct notation
		(3)
		[11]

QUESTION 7

7.1	$\begin{aligned} & \begin{array}{l} \text { n } \triangle P Q R: \\ \hat{Q}_{1}=x \end{array} \quad \quad(P R=Q R) \\ & \hat{R}=180^{\circ}-2 x \quad \quad(\text { sum of } \angle \Delta P Q R) \\ & \text { Area of } \triangle P Q R= \\ & \begin{aligned} = & \frac{1}{2} p q \sin \hat{R} \\ = & \frac{1}{2} m \cdot m \sin \left(180^{\circ}-2 x\right) \\ = & \frac{1}{2} m^{2} \sin 2 x \end{aligned} \end{aligned}$	$\begin{aligned} & A \widehat{\sqrt{ } Q_{1}}=x \\ & A \widehat{\sqrt{ } R}=180^{\circ}-2 x \end{aligned}$ A \checkmark Subst. into Area rule $A \checkmark \sin 2 x$ $\mathrm{A} \checkmark \text { answer }$

7.2	$\begin{aligned} & \therefore \frac{P Q}{\sin \left(180^{\circ}-2 x\right)}=\frac{m}{\sin x} \\ & \therefore P Q=\frac{m \cdot \sin \left(180^{\circ}-2 x\right)}{\sin x} \\ & \therefore P Q=\frac{m \cdot \sin 2 x}{\sin x} \\ & \therefore P Q=\frac{m \cdot 2 \sin x \cdot \cos x}{\sin x} \\ & \therefore P Q=2 m \cos x \end{aligned}$	A \checkmark Use of sine rule A \checkmark subst into sine Rule A $\checkmark \sin 2 x$ $\mathrm{A} \checkmark 2 \sin x \cos x$ (4)
7.3	In $\triangle S P Q$: $\begin{aligned} & \tan y=\frac{S P}{P Q} \\ & \therefore S P=P Q \tan y \\ & \therefore S P=2 m \cos x \tan y \end{aligned}$	$\begin{align*} & \mathrm{A} \checkmark \tan y=\frac{S P}{P Q} \\ & \mathrm{~A} \checkmark \mathrm{SP}=\mathrm{PQ} \tan y \tag{2} \end{align*}$

QUESTION 8

8.1

\begin{tabular}{|c|c|c|c|}
\hline 8.2.1 \& \begin{tabular}{lr}
In \(\triangle \mathrm{APQ}:\) \& \(\frac{A B}{A P}=\frac{A C}{A Q} ;\) conv prop \\
\(\mathrm{BC} \| \mathrm{PQ}\) \& \\
\(\widehat{\mathrm{T}}_{1}=\widehat{\mathrm{C}}_{2}\) \& alternate \(\angle \mathrm{s} ; \mathrm{BC} \| \mathrm{PQ}\) \\
\(\widehat{\mathrm{A}}_{2}=\widehat{\mathrm{C}}_{2}\) \& tangent \(\mathrm{TC} ;\) chord BC \\
\& \(\therefore \widehat{\mathrm{A}}_{2}=\widehat{\mathrm{T}}_{1}\)
\end{tabular} \& \[
\begin{array}{lll}
A \checkmark S \& A \checkmark R \\
\& \& \\
A \checkmark \& S / R \\
A \checkmark \& S / R
\end{array}
\] \& \\
\hline 8.2.2 \& \[
\begin{array}{ll}
\hline \text { In } \Delta \mathrm{ABC} \text { and } \Delta \mathrm{TCQ}: \\
\widehat{\mathrm{C}}_{3}=\widehat{\mathrm{Q}} \& \text { corr } \angle^{\mathrm{s}} ; \mathrm{BC} \| \mathrm{PQ} \\
\widehat{\mathrm{~A}}_{2}=\widehat{\mathrm{T}}_{1} \& \text { proved above } \\
\widehat{\mathrm{B}}_{2}=\widehat{\mathrm{C}}_{1} \& \text { rem } \angle^{\mathrm{s}} \\
\therefore \Delta \mathrm{ABC} \| \Delta \mathrm{TCQ} \& \angle \angle \angle
\end{array}
\] \& \begin{tabular}{l}
\(A \checkmark S / R\) \\
\(A \checkmark S / R\) \\
A \(\checkmark\) S/R \\
\(A \checkmark S / R\)
\end{tabular} \& (4) \\
\hline 8.2.3 \& \begin{tabular}{ll}
\(\widehat{\mathrm{B}}_{1}=\widehat{\mathrm{C}}_{3}\) \& tangent SB; chord AB \\
\(\widehat{\mathrm{Q}}=\widehat{\mathrm{C}}_{3}\) \& proven \\
\(\therefore \widehat{\mathrm{B}}_{1}=\widehat{\mathrm{Q}}\) \& \\
\(\therefore\) ABTQ is cyclic \& conv. ext \(\angle=\) int \(\angle\) of cyclic quad.
\end{tabular} \& \[
\begin{aligned}
\& A \checkmark S A \checkmark R \\
\& A \checkmark S \\
\& A \checkmark S / R
\end{aligned}
\] \& (4)

(4)

\hline 8.2.4 \& | $\mathrm{TB}=\mathrm{TC}$ | tangents from common point |
| :--- | :--- |
| $\widehat{\mathrm{B}}_{3}=\widehat{\mathrm{C}}_{2}$ | $\mathrm{~TB}=\mathrm{TC} ; \angle \mathrm{s}$ opp eq. sides |
| $\widehat{\mathrm{T}}_{1}=\widehat{\mathrm{C}}_{2}$ | alt. $\angle \mathrm{s} ; \mathrm{BC} \\| \mathrm{PQ}$ |
| $\therefore \widehat{\mathrm{B}}_{3}=\widehat{\mathrm{T}}_{1}$ | |
| $\therefore \mathrm{TQ}$ is a tangent | |
| | conv. tan; chord theorem | \& \[

$$
\begin{aligned}
& \text { A }{ }^{\wedge} S \quad A \vee R \\
& A \checkmark S \\
& A \checkmark S / R \\
& A \checkmark S / R
\end{aligned}
$$
\] \&

\hline \& \& \& (5)

\hline
\end{tabular}

QUESTION 9

9.1	In $\triangle \mathrm{MBC}:$		
$\hat{\mathrm{B}}_{2}=\hat{\mathrm{B}}_{3}=x$	BE bisects MBCC	$\mathrm{A} \checkmark \mathrm{S}$	
$\therefore \mathrm{MBC}=2 x$		$\mathrm{~A} \checkmark \mathrm{~S} / \mathrm{R}$	
$\mathrm{MBC}=\mathrm{MCB}=2 x$	angles opposite equal sides		
In $\Delta \mathrm{BEC}:$		$\mathrm{A} \checkmark \mathrm{S} / \mathrm{R}$	
$\hat{\mathrm{E}}_{2}=180^{\circ}-(x+x)$	Sum of angles of a Δ		
$=180^{\circ}-2 x$		$\mathrm{~A} \checkmark \mathrm{Answer}$	

QUESTION 10

10.1.1	$\begin{array}{ll} \text { Let } \widehat{\mathrm{Y}}_{1}=\mathrm{a} & \text { and } \widehat{\mathrm{N}}=\mathrm{b} \\ \therefore \widehat{\mathrm{~T}}_{3}=\mathrm{a}-\mathrm{b} & \text { (ext. } \angle \mathrm{of} \Delta=\text { sum opp. } \angle \mathrm{s} \text {) } \\ \widehat{\mathrm{T}}_{1}=\widehat{\mathrm{N}}=\mathrm{b} & \text { (tan XT; chord MT) } \\ \mathrm{X} \widehat{\mathrm{~T}}=\mathrm{a} & \text { (angles opposite equal sides) } \\ \widehat{\mathrm{T}}_{2}=\mathrm{XT} \mathrm{Y}-\widehat{\mathrm{T}}_{1} & \\ \quad=\mathrm{a}-\mathrm{b} & \\ \therefore \widehat{\mathrm{~T}}_{3}=\widehat{\mathrm{T}}_{2} & \\ \therefore \text { YT bisects MT̂N } & \end{array}$	$A \checkmark S / R$ $A \vee S \quad A \checkmark R$ $A \checkmark S / R$ $A \checkmark S$ (5)		
10.1.2	$\begin{array}{ll} \hline \text { In } \Delta \mathrm{XMT} \text { and } & \Delta \mathrm{XTN}: \\ \widehat{\mathrm{X}} \text { is common } & \\ \widehat{\mathrm{T}}_{1}=\widehat{\mathrm{N}} & \text { tan XT; chord MT } \\ \widehat{\mathrm{M}}_{1}=\mathrm{XTN} & \text { remaining } \angle \\ \therefore \Delta \mathrm{XMT}\\|\\| \mathrm{XTN} & \angle \angle \angle \\ \therefore \frac{\mathrm{XM}}{\mathrm{XT}}=\frac{\mathrm{XT}}{\mathrm{XN}}=\frac{\mathrm{MT}}{\mathrm{TN}} & \text { similar } \Delta^{\prime} \mathrm{s} \\ \therefore \frac{\mathrm{XM}}{\mathrm{XT}}=\frac{\mathrm{XT}}{\mathrm{XN}} & \end{array}$	$\begin{aligned} & A \checkmark S / R \\ & A \vee S \quad A \vee R \\ & A \vee R \\ & A \vee R \\ & A \vee S / R \end{aligned}$		
10.2.1	$\begin{array}{rlr} X M & =X Y-20 & \mathrm{XY}=\mathrm{XT} \\ & =k-20 & \end{array}$	$\mathrm{A} \checkmark \mathrm{~S} \mathrm{~A}^{\checkmark} \vee$ A \checkmark answer (3)		
10.2.2		A \checkmark LHS A \checkmark RHS A \checkmark Simplification A \checkmark Answer		

